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The existence and stability conditions for the steady motions and equilibrium positions of non-linear quasi-conservative systems 
with fast external perturbations having quasi-periodic and random components are investigated. A change of variables is proposed 
which reduces Lagrange's equations of the system to standard form. It is shown the averaged system of the first approximation 
has a canonical form and the effect of fast perturbations (not necessarily potential) is equivalent to a change in the system's 
potential. This leads to stabilization of unstable equilibrium positions and to the appearance of additional stationary points different 
from the equilibrium positions of the unperturbed system. The approach used is illustrated by examples; the stability of a pendulum 
on an elastic suspension when there is suspension point, and the steady motion of a sphere subjected to a high-frequency load. 
The critical loading of a double pendulum loaded by a pulsating tracking force is estimated. A form of wide-band random 
perturbations capable of stabilizing the system is considered. © 2002 Elsevier Science Ltd. All rights reserved. 

Stabilization of the unstable equilibrium positions of dynamical systems in the case of high-frequency 
or quasi-periodic perturbations of their parameters has been known for years [1-5]. The stabilization 
of non-linear systems with random perturbations has mostly been studied for systems with one degree 
of freedom 6, 7. The question of the form of wideband action capable of stabilizing the system has been 
discussed [8]. 

The main attention has been given to the stabilization of an unstable equilibrium position of an 
unperturbed system. However, it follows from general results [3, 4] that high-frequency parametric 
perturbations may lead to the assurance of additional stable positions of relative equilibrium not found 
in unperturbed systems. This phenomenon has been studied in detail for mechanical systems such as 
a pendulum with a non-linear suspension [4], a spherical pendulum [9-11] and a Lagrange top [12] 
subjected to kinematic excitation. 

Methods of investigating perturbed systems have been developed [3, 4] in which the equations of 
motion are reduced to standard form and the stationary points of the averaged equations of the first 
approximation are analysed. The direct use of this approach to analyse complex mechanical systems, 
represented by Lagrange's equations, requires preliminary transformations of the equations of motion 
and does not enable an explicit relation between the stability conditions and the system's structure to 
be obtained. 

In this paper we introduce a change of variables which reduces Lagrange's equations of the perturbed 
system to standard form, allowing of averaging. It is shown that the effect of fast perturbations in the 
first approximation reduces to a modification of the structure of the potential forces. The deformation 
of the potential of the system can give rise to new stable stationary points, different from the stable 
equilibrium positions of the unperturbed system. This relation between the stability and the change in 
potential was also obvious in each of the special cases investigated previously in [4, 9-12]. In this paper 
additional potential forces are found in explicit form for a fairly wide range of systems. It is shown that 
the effect of a change in potential also holds for both deterministic and random non-potential 
perturbation. 

1. INITIAL PROPOSITIONS AND FORMULATION OF THE 
VIBRATIONAL STABILIZATION PROBLEM 

Suppose x is the "slow time" associated with the system, x0:) and x" = dx/dT are n-dimensional vectors 
of the generalized coordinates and velocities, and T(x, x') is the kinetic energy of the system, specified 
by a matrix A(x). The matrix A(x) is positive - definite in the domain of variation of the variables 
considered. The potential energy of the system is denoted by the function ~(x) and the vector of potential 
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forces is denoted by Q(x) = dep/dx. The vector of generalized forces, in general, is non-potential and 
can be written, in the general case, in the form Se(x, x) = C1S('c/e, x), where e is a small parameter, and 
does not include a constant component. We suppose that S~(x, x) is a zero mean function of T. Hence 
it follows that the system's motion is considered as a slow process compared to the perturbations. A 
similar separation of the fast and slow motions is typical, for example, for pendulum-like systems with 
a kinematic excitation, where the generalized force S~('c, x) corresponds to inertia forces generated by 
rapid vibration of the suspension point [4-12]. 

We will consider the "fast time" t = x/e as the independent variable and write the equations of motion 
in the form of Lagrange's equations 

d OT 3T 
+ e2Q(x) = eS(t,x) (1.1) 

dt~x" ~x 

where 

x'= dx I dt, T(x, x') = [(x')r A(x)x'] 12 

The functions A(x), Q(x) and S(t, x) are assumed to be sufficiently smooth and allow of the necessary 
transformations. 

We introduce the new variables 

x = q,p = A(q)q" (1.2) 

which yields 

q'(p,q) = u(p,q) = a(q)p, a(q) = A-'(q) (1.3) 

We define the total energy of the system as 

E(p,q, e) = G(p,q)+ e2~(q); G(p,q) = T(q,u (p,q)) (1.4) 

where, by (1.1)-(1.3), G(p, q) = pra(q)p/2. The equations of motions for the variables q and p can then 
be written in the form 

0 E  . 0 E  
q'= ~p , p =---~--~+eS(t,q) (1.5) 

oq 

Since the motion is slow, we introduce a new slow variable y by the formula 

p = ey+eV(t,q); S(t,q) = 3V(t,q)lOt (1.6) 

where V(t, q) does not contain a constant component. This assumption enables as to construct a 
unique function V(t, q) corresponding to the given function S(t, q). Unlike the replacement of 
variables for second-order equations [4], transformation (1.6) does not require inversion of 
matrices and results in equations in standard form, in which only the first power of e occurs on the 
right-hand sides 

q'= aa(q)y + EFt(t,q) 

y '=  -E ~q { [a,(q) + F(q)] + I[yra(q)y]} + ~.F2(t,q, y) (1.7) 

where 

I 7. I 
F(q) = (F(t,q)) = lira -- ' [M F(t,q)dt, F(t,q) = - Vr(t,q)a(q)V(t,q) 

r-~Z~o 2 
(1.8) 

Here and below M is the mathematical expectation operator. 
Transformation (1.6) enables us to define the terms Fl(t, q) and F2(t, q) in such a way that the average 

(Fl,2(t, q, y)) = 0. The coefficients of (1.7) are assumed to be sufficiently smooth to allow necessary 
transformation. Restrictions are associated with the process F(t, q). Further we suppose that the function 
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F(t, q) is taken as a sum of bounded quasi-periodic and random processes, and the averaging principle 
[13] (or the stochastic averaging principle [14]) is applicable to system (1.7). 

If S(t, q) = v'(t)Y(q), where v'(t) is a scalar, the coefficient F(t, q) takes a simpler form 

F(t,q)=-~v2f(q), F(q)= a2f(q) 

f(q) = yr(q)a(q)y(q), ~2 = (u2(t)) (1.9) 

Together with Eq. (1.7) we consider the truncated system 

qo=ea(qo)Yo, Yo=-E~o{[~(qo)+F(qo)]+l[yra(qo)Yo] } (1.1o) 

Relations (1.3) and (1.4) imply that Eqs (1.10) describe the motion of a conservative system with 
Hamiltonian H(yo, qo)~ G(Yo, qo) + U(qo), where qo andy0 are the vectors of the generalized coordinates 
and momenta, G = y6 a(qo)Yo/2 is the kinetic energy of the system and U(qo) = O(q0) + F(qo) is the 
potential energy. We will call the function U(qo) "the effective potential". The term F(qo) corresponds 
to the contribution of fast perturbations to the effective potential and the function K(qo) = OF(qo)/Oqo 
defines the additional potential forces. Hence the effect of fast perturbations in the first approximation 
reduces to a change in the structure of the potential forces compared with the unperturbed system. 

Standard procedures [15] can be employed to study the stationary solutions of Hamilton system (1.10). 
If system (1.10) does not contain cyclic coordinates, the stationary points q* of system (1.10) can be 
found as the extremal points of the potential U(q), i.e. from the equations 

OU/Oq = R(q) = Q(q) + K(q) = O, q ~ R n (1.11) 

The point q* corresponding to a strict minimum of U(qo) is a stable stationary point of truncated 
system (1.10). 

Suppose the coefficients a(q), d~(q), F(q) depend only on the coordinates qi, where i = 1, m. Then 
system (1.10) allows of separation of the cyclic coordinates so the system's dimensionality is diminished. 
The truncated system for the positional coordinates retains the form (1.10), but the function O(q) is 
interpreted as the corresponding Routh potential [15]. Steady solutions can be obtained from Eq. (1.11) 
as extrema of the corresponding effective Routh potential. 

It follows from the properties of a Hamilton system [15] that, in the linear approximation a stationary 
solution can be either unstable or non-asymptotically stable. In the first case the original system (1.7) 
is also unstable (with probability 1 in the case of random perturbations). In the second case the solution 
of the perturbed system remains in a small neighbourhood of the equilibrium position at least in the 
time interval t - 1/e. An analysis of the stability requires a consideration of a higher-order asymptotic 
expansion [13, 16]. 

If the equations of motion contain dissipative forces, the corresponding stationary solution can become 
asymptotically exponentially stable in the linear approximation. For uniformly bounded periodic or 
almost periodic perturbations, the stationary solution of the perturbed system is also asymptotically 
stable and remains within an e-neighbourhood of the stationary point [13]. If the perturbations are 
random stationary processes, which cannot be regarded as bounded, then, under previous 
assumptions, system (1.7) is asymptotically stable in probability [14], since almost all trajectories converge 
to a small vicinity of the stationary point as t --r oo, and large deviations (of order 1) from this point 
occur with probability - exp (- C/e) [14]. 

Analysis ofpossible stationary solutions. In the general case of non-linear systems the stationary points 
found from Eq. (1.11) do not coincide with the equilibrium positions of the unperturbed system. Consider 
some special cases. 

Suppose the kinetic energy matrixA is independent ofx and the perturbation occur additively, that 
is S(t, x) -= S(t). Then F(t, q) - O, K(q) - O, that is, an additive fast perturbation does not change the 
equilibrium positions of a non-linear system and does not affect their stability. 

Suppose the unperturbed system does not contain cyclic coordinates. From Eq. (1.11) it then follows 
that the unperturbed equilibrium positions persist if the roots of the equation K(q) = 0 are identical 
with the roots of the equation Q(q) = 0. However, the conditions for these equilibrium positions to be 
stable may change. 
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Consider the example of a linear system. The equations of motion have the form 

x " +  e2Cx + eS(t)x = O, S(t) = V'(t) (1.12) 

If the matrix C is positive-definite, the unperturbed system when S(t)  = 0 has the stable equilibrium 
X ~ 0 .  

Truncated system (1.10) reduces to the form 

qO = ~Yo, Yo = --(C + D)qo (1.13) 

where, by (1.8), D is a matrix with components D/j = (Wi(t)~(t)). If the matrix C + D is non-degenerate, 
system (1.13) retains the equilibrium position q0 0. Its stability is determined by the properties of 
the roots of the characteristic equations 

det lip 2 + (C + D)I = 0 (1.14) 

For a correct choice of the perturbation intensity, the matrix C + D becomes positive - definite, even 
if the matrix C does not possess this property. An unstable equilibrium position can thus be stabilized 
by a fast parametric perturbation [3]. 

A random perturbation. If the perturbation is periodic or quasi-periodic and its frequencies are much 
higher than the natural frequencies of the system, the perturbation can be regarded as a rapidly varying 
process compared to the motion of the system. In this case a small parameter is introduced as the ratio 
of the frequencies. If the perturbation is a random stationary process with a continuous spectrum, the 
concept of a rapidly varying perturbation and the introduction of a small parameter require an 
explanation. 

Suppose we represent the vector of generalized forces in the form S(t, x) = s(t)Y(x),  where 
s(t) = v'(t) is a scalar stationary Gaussian process with continuous spectral density in the form of a 
rational fractional function [17]. We now find the conditions under which a with a continuous spectrum 
can be considered as a high-frequency process and all previous transformations remain valid. It follows 
from (r, t) and (r, s) that all transformations are valid if the process s(t) is integrable, and its spectrum 
can be represented in the form 

R, (to) = co 2k I P2,fito) II L2m (ito)I-' (1.15) 

where k = 1, and L~(p )  and P2n(P) are polynomials of degrees 2m and 2n, respectively, where 
2m/> 2(n + k). Hence R(0) = 0, and the spectral density R(to) is small for fairly small co < co'. By 
analogy with the well-known definition [17], the frequency to* is called the cut-off frequency. 

If a system is subjected to a kinematic excitation r(t), the generalized force S(t, x) = s(t)Y(x) 
corresponds to the inertia forces generated by the acceleration s(t) = v'(t) = r"(t). This implies that 
both v(t) and r(t) must be processes of limited variance. The spectrum of the process s(t) then has the 
form (1.15) with k = 2, and it also has a cut-off frequency co'. If this frequency is higher than the natural 
frequencies of the system, s(t) can be considered as a high-frequency process. It follows from (1.15) in 
particular, that the system cannot be stabilized by a parametric perturbation s(t) of the "white noise" 
type. The introduction of a small parameter for random perturbations is discussed in Section 2 using 
an example. 

2. THE STABILITY OF THE E Q U I L I B R I U M  POSITIONS OF A 
P E N D U L U M  ON AN ELASTIC SUSPENSION 

As an example, we will investigate the change in the equilibrium positions of a pendulum OC on an 
elastic suspension.DC (Fig. 1). 

The pendulum moves in a horizontal plane, i.e. the effect of gravity can be ignored. The centre of 
mass of the pendulum is at the point C. The axis of rotation O of the pendulum is located under the 
fixing point D of the suspension; without loss of generality we will simplify the calculations by putting 
OD = OC = I. The  kinetic energy of the pendulum is T = m/2(0 )2/2, that is, A(0) = rnl 2, a(O) = 1/(ml2), 
where rn is the mass of the pendulum, and 0 is the angle between the pendulum and the axis OD. The  
suspension point O oscillates with acceleration v'(t) along the vertical axis. Following D'Alembert's 
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principle, we change kinematic excitation to the inertia forces, and consider the relative motion as 
oscillations of the pendulum with a fixed axis acted upon by the inertia force J = m v'(t) applied at the 
centre of mass (Fig. 1). The potential energy of the elastic suspension is written in the form 

Fl(O) = 2m12k2[cos(O I 2 ) -  ~.]2, k 2 = c / m, ~,=102l<1; 

where 10 is the length of the non-deformed suspension. The generalized force corresponds to the moment 
of the inertia force, i.e. 

L( t, O) = mu (t)lsin 0 

If the oscillation of the base is harmonic, r(t) = ct sinto, the small parameter e is introduced taking 
into account the relations between the parameters of the system t~ ,~ I, k ,~ 60. We now introduce a 
small parameter in the case of random oscillations of the suspension when the amplitude and frequency 
of the perturbation cannot be clearly distinguished. For simplicity, we assume o'(t) to be a process with 
bounded variance, ([u'(t)] 2) = D 2. Put v'(t) = trtow(t), where o 2 = (v2(t)), and w(t) is a dimensionless 
acceleration such that (w'2(t)) = 1. Then ([v'(t)] 2) = (oto) 2, to = D/o. Bearing in mind the relations 
between the system parameters, we let k/to = e, o/lto = e9. 

With these assumptions we can write. 

H(O) = e20(O) = 2em12oo2[cos(OI 2) -  L] 2 

L(t.O) = ~.S( t, O) = ~.m12o32pw(t )sin 0 

As a result of transformations, taking (1.9) into account we obtain 

F(0) = / ml2to2p2 sin 2 0 
2 

Then 

U(O)= ~(O)+ F(O)= ml2to2[2(cosO- ~.)2 + l p 2  sin2 0] (2.1) 

Extrema of the effective potential (2.1) can be found from the equation 

R(0) = -2 si n O (cos O _ Z.) + p 2 sin 0 cos 0 = 0 (2.2) 
2~, 2 

(a positive constant coefficient is omitted). Two equilibrium positions exist in the unperturbed system 
(9 = 0), defined by the condition 
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K(0)=-2k2s inO(cos  O - ~ , ) = 0 ;  0 o =0,  01 =2arccosZ, (2.3) 

It can be shown that the equilibrium position 00 = 0 is unstable, whereas 01 is stable. To determine the 
perturbed equilibrium positions, we transform Eq. (2.2) to the form 

O 0 
R(0) = 2sin [-z+~.+p2z(2z2-1)]=O, z(0) = c o s -  ~ [0,1] 

2 
(2.4) 

The system retains the equilibrium position 00 - 0. It can be verified that this position is stable if 
02 > 1. Additional equilibrium positions can be found as roots of the cubic equation (Fig. 2) 

f(z) = 2p2z 3 - ( !  + 192 )z = -~., 

Elementary analysis shows that when the condition 

2 la2) ~ 
346 (I + > ~t2X, 

0 ~ z ~< 1 (2.5) 

I 
~t = - (2.6) 

P 

is satisfied Eq. (2.5) has three real roots, two of which are positive. In Fig. 2 these roots are defined as 
points of intersection of the straight line I with the graph of function (2.5). If this condition is not satisfied, 
Eq. (2.5) has a unique real negative root, defined as the point of intersection of the straight line 2 with 
the graph of function (2.5). This root is not taken into account when analysing the stability. 

Condition (2.6) is always satisfied if ~t = 1/p < 1 is sufficiently small and ~, < 1. The roots of 
Eq. (2.6) and the corresponding equilibrium positions have the form 

z, =--~- ~ [ - -~- -  ) O , - - - 2 - ~ 2 ( 1 - ~ 2  L) (2.7) 

z2 -- I -t2~,, 02 - ~ - 21.t2~, 

Investigating the stability of the equilibrium positions we obtain that the positions 00 = 0 and 
02 = It - 2tx2~. are stable, and the position 01 is unstable when kt < 1, p > 1. 

Condition (2.6) holds for fairly small p ,~ 1, but in this case the maximum root zt > 1. Hence two 
equilibrium positions exist, the unstable position 00 = 0 and the stable position 02 corresponding to 
the minimum positive root z2 --- k (1 + 02), that is 02 = (arccos ~. + x"29/4). This implies that weak fast 
perturbations when p ~ 1 result in only a slight displacement of the equilibrium position. If P "> 1, the 
perturbation is fairly large and new stable equilibrium positions appear. 

3. THE M O T I O N  OF A S P H E R E  S U B J E C T E D  TO 
A H I G H - F R E Q U E N C Y  LOAD 

We will now investigate, as an example of a system with cyclic coordinates, a sphere which rolls without 
slipping over a smooth horizontal plane. 

f 

-- %4 Z 3 ~  Z2 Z|/ Z 

Fig. 2 
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The centre of gravity D of the sphere with the coordinates xo  and Yo lies on the axis of dynamic 
symmetry but does not coincide with the geometric centre O of the sphere, and O D  = d ~ O. T h e  
coordinates xD and YD and the Euler angles ~, ~, 0 are chosen as independent coordinates. Here 0 is 
the angle of nutation between the vertical axis z and the axis of dynamic symmetry ~, ¥ is the angle of 
precession and tO is angle of pure rotation around the ~ axis (Fig. 3). We will investigate the motion of 
the sphere under the inertial excitation J = hcoZsinc0t applied at the centre of mass, under the condition 
that the sphere executes continuous motion along the plane. The kinetic energy of the body is given 
by [15] 

2T = (K + Md 2 sin 20)0 'z + K~g "2 sin 20+ C(to" + ¥" cos0) 2 + M v  2 (3.1) 

where M is the mass of the body, C is the moment of inertia about the ~ axis, the central moments of 
inertia about the two other principal axes are equal to K, and the velocity of the centre of gravity is 
v 2 = x~ + y~. The potential energy of the sphere is 

1-1(0) = - M g d c o s O  (3.2) 

the force J generates a torque around the axis of nutation (Fig. 3) 

Y(0) = -Jdsin 0 = -hdco 2 sin 0sin cot (3.3) 

It follows from (3.1)-(3.3) that xo, YD, to, ~s are cyclic coordinates and 0 is a positional coordinate. 
The corresponding momenta take the form 

P0 = A(0)0, A(0) = K + Md 2 sin 20 

Px = Mxo  = m, py = My" o = n (3.4) 

p~ = C ( t o ' + ~ s ' c o s O ) = G ,  pq = K ¥ ' s i n 2 0 + G c o s O = D  

where m, n, G and C are constants. From (3.1), (3.2) and (3.4) we obtain the Routh potential in the 
form [15] 

FI*(0)= I ( D - G c o s O ) Z - M g d c o s O +  .!  (mZ + n  2) (3.5) 
2KsinZ0 2M 

We introduce a small parameter e. Let the natural frequency of rotational oscillations under gravity 
be small compared to the frequency of external excitation, that is g/dco 2 = o) 2. Making the usual 
assumptions regarding the relations between the system parameters, we define 

h G D Md 2 
Md =Err, xco = ~ '  Kco = ~ '  - x  = f~ 

z 

~° 

O 

Fig. 3 
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Relations (1.8) and (3.3)-(3.5) then yield. 

Y(O) = eS(t,0), S(t,O) = -o~2KI.t13 sin mt sin 0 

which gives 

!to2KIX2 132sin 2 O F(O) 
7 1 + 13sin 2 0 '  

rl*(0)= e2¢*(0) 

i .e, 

I co2K[(8-~)2 _ 2Bu], ,t,'(o)=7 L 7--7 u=cos0  (3.6) 

(the constant component in @*(0) is dropped). 
Consider in detail the non-singular case sin 0 # 0, 8 # ywhen b / >  0. From Eqs (1.11) and the 

expression for the effective potential U = F + O* we obtain an equation for determining the equilibrium 
positions. 

R(O)=io)2XsinO~(8--yu)(~28u ) ~. 21] + 2[}21.t2 u } = 0  
2 [ ( l - u ' )  [I +1](1- u2)] 2 

(3.7) 

The roots of this equation can be obtained graphically as the points of intersection of the curves 

( 8 -  yu)(y- flu) _2[3{1 + 131.t 2 u } (3.8) 
f (u)=  ( I -u2)  2 ' g(u)= [l+13(l_u2)] 2 

If 8 and y have the same sign, then, when 13 > 0, the unperturbed system has a single stable equilibrium 
position u* > 0, 0" = arccos u '  corresponding to the centre of gravity below the geometrical centre of 
the sphere [15] (Fig. 4). 

The angle of inclination of the axis OD decreases when IX is fairly small, but the equilibrium position 
remains unique and stable, As the parameter IX increases, three points of intersection appear. These 
points correspond to a lower (IXl > 0), upper (IXz > 0), and intermediate (u2 < 0, 02 = arccos u2 > ~t/2) 
equilibrium positions. 

We will obtain an approximate value of u2 and estimate the stability of the corresponding equilibrium 
position. Suppose 02 = n/2 +'q, rl "~ 1; we then find u2 --- - ~ and neglect the terms of order ~2 in 
Eq. (3.7). The root u2 can then be found from the linearized equation 

p.=0 

i f ,g 

U* U I 

Fig. 4 
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8 y + 2 ~ + ( p 2 - y 2 - 8 2 ) u  =0; p 2 = 2112gt~-(! + 1]) -~- (3.9) 

The root uz = (72 + 8z _ 92)-1(8¥ + 213) < 0 exists when 8)' > 0 provided P: > Y~ + 82, i.e. the perturb- 
ation intensity is high. 

We will investigate the stability of the position 0r. When 02 = ~ 2  + r I, r I ,~ 1 we have 

dR~dO = -to2K(p 2 _)'2 _ 8 2 ) / 2  < 0 

i.e. the intermediate position is unstable, and, in turn, the lower position 01 < ~ 2  and the upper position 
03 > 02 > rd2 are stable. This indicates that high-frequency excitation can sustain stable motion in which 
the centre of gravity of the sphere lies above its geometrical centre. If the perturbations are weak, 
O. < ),2 + 62, only the lower equilibrium position 0* < n/2 exists. 

We will now investigate the existence of regular precession in the motion of the sphere. From (3.4) 
we obtain 8 = ~ + Ig'(1 - u:). On reduction Eq. (3.7) takes the form 

-U[Ig'2(I-c)+ 2~2~2(l+1]-~U2)-2]=1]+Cq~'lg'; c=C/ I( (3.10) 

If tu I < 1, equality (3.10) can be regarded as the condition for regular precession to exist. A solution 
[u [ < 1 exists if 

[ ~g'~ (I - c) + 2~2gt2(1 + ~)-2 1>1 [3+ cq0"~g" [ (3.11) 

Regular precession in the unperturbed system exists if 

V Z l l -  c l>II3 + c~0~g I (3.12) 

High-frequency perturbation weakens the condition for regular precession to exist, since it is possible 
for the following conditions to be satisfied 

Ig'2 I I - C J< ~ + Ctp'¥" <l Ig'2( 1 - C) + 2112/.t 2(I + I]) -z ] (3.13) 

Hence high frequency perturbation can produce not only new equilibrium positions, but also stable 
steady motions not found in the unperturbed system. 

A similar analysis can be carried out for the case when 6)' < 0. 
We will consider some special cases. 
(1) 0 = 0, u = 1, 8 = )'. Calculating the derivative of R(0) when 0 = 0 we obtain dR~dO > 0 for all 

values of the parameters, including ~t = 0 (an unperturbed system). 
(2) 0 -- ~, u = -1, 6 = -)'. Calculating dR~dO when 0 = rc we obtain 

dR~dO>O, y2 / 4 > 213(! - 131.t2) (3.14) 

From inequalities (3.14) it follows that the upper equilibrium position in the unperturbed system is 
unstable if y~/4 < 21]. This means that high-frequency perturbation can stabilize an unstable equilibrium 
position. 

4. I N C R E A S E  IN T H E  C R I T I C A L  LOAD D U E  TO FAST P U L S A T I O N  
OF T H E  T R A C K I N G  F O R C E  

As an example of a system acted upon by non-potential rapidly varying forces, we will consider a double 
pendulum driven by a tracking force. The pendulum consists of  two similar weightless rods of length l 
and mass m concentrated at the ends of the rods, joined by elastic hinges of  stiffness c. The pendulum 
is set up on a fixed base. The tracking force F tracks the position of the upper rod (Fig. 5). 

The loss of stability of a system on a fixed base has been studied in detail [18]. We know that the 
achievement of the critical level of loading gives rise to instability. The critical load increases in the 
case of  quasi-periodic vibrations of  the base [5]. 

We will investigate the effect of  pulsation of the load on the system stability. Suppose the tracking 
force has the form F = F0 + F~(z), where F0 is a constant component and F~(x) is a rapidly varying 
a.lternating component satisfying the conditions of Section 1. Motion occurs in a horizontal plane and 
the effect of gravity and dissipative forces is neglected. A detailed analysis of the equilibrium positions 
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and their stability is quite complicated and requires a numerical analysis. We will therefore restrict our 
consideration to determining the critical load which loads to a loss of elastic stability. 

The linearized equations of slow motion in the neighbourhood of the equilibrium position 01 = 
02 = 0 have the form 

2m/20~'+ ml20"; " + (2c - FI)O I - (c - FI)O 2 = 0 

m/20~'+ ml20"2 " - cO I + c02 = 0 
(4.1) 

where the prime denotes the derivative with respect to the slow time x = Et, where E is a small parameter 
defined in the standard way. Changing to the fast variable t system (4.1) can be reduced to the form 
(1.1) 

0~" + lit 2 (3k 2 _ f0) - ew(t)]0t + [ E2 (f0 - 2k 2 ) + ew(t)]02 = 0 

OH + [ ez (fo - 4k z )  + ew(t)]01 + [E2( 3k2 - f0) - Ew(t)]02 = 0 (4.2) 

where 

~:2k2 =el(ra t2) ,  e2fo = Fol(ml  ), Ew(t)= F~l(ml),  w(t)= o'(t)  

The characteristic Eq. (1.14) eZk z = c / (ml  z),  eZ fo = Fo/ (ml) ,  Ew(t) = F~(ml),  w(t)  = v "(t), corresponding 
to system (4.2), takes the form 

[p2 +(3k 2 _~)12 _ ( ~ _ 2 k 2 ) ( ~ _ 4 k 2 ) = O ;  ~ = f o  -2G2,  

Analysing the rods of Eq. (4.3) we obtain the following conditions [18]: 
stabilization 

G 2 = (o 2(0) (4.3) 

p2<O, f 0 < 2 ( k 2 + o  2) 

dynamic instability (flutter) 

Imp2 ~0,  2 ( k 2 + o 2 ) < f o < 4 k 2 + 2 G  2 
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static instability (divergence) 

p2 > 0, f0 > 4k2 + 2ff2 

T h u s  the  c r i t i ca l  l oad  sat is f ies  t he  i n e q u a l i t y  

f0 > 2( k2 + i f 2 )  

It is easy to see that the critical value of the tracking force increases compared with the unperturbed 
system (c~ = 0). 
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